
AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 1

Q.2.a. Briefly explain the features of OOP.

Ans. The important features of Object Oriented programming are:

1. Inheritance: Inheritance as the name suggests is the concept of inheriting or
deriving properties of an exiting class to get new class or classes. In other words
we may have common features or characteristics that may be needed by number
of classes. So those features can be placed in a common tree class called base
class and the other classes which have these characteristics can take the tree class
and define only the new things that they have on their own in their classes. These
classes are called derived class. The main advantage of using this concept of
inheritance in Object oriented programming is it helps in reducing the code size
since the common characteristic is placed separately called as base class and it is
just referred in the derived class. This provide the users the important usage of
terminology called as reusability

2. Polymorphism and overloading: Poly refers many. So Polymorphism as the name

suggests is a certain item appearing in different forms or ways. That is making a
function or operator to act in different forms depending on the place they are
present is called Polymorphism. Overloading is a kind of polymorphism. In other
words say for instance we know that +, - operate on integer data type and is used
to perform arithmetic additions and subtractions. But operator overloading is one
in which we define new operations to these operators and make them operate
on different data types in other words overloading the existing functionality with
new one. This is a very important feature of object oriented programming
methodology which extended the handling of data type and operations.

3. Data Hiding: This concept is the main heart of an Object oriented programming.

The data is hidden inside the class by declaring it as private inside the class. When
data or functions are defined as private it can be accessed only by the class in
which it is defined. When data or functions are defined as public then it can be
accessed anywhere outside the class. Object Oriented programming gives
importance to protecting data which in any system. This is done by declaring data
as private and making it accessible only to the class in which it is defined. This
concept is called data hiding. But one can keep member functions as public.

4. Encapsulation: The technical term for combining data and functions together as a

bundle is encapsulation.

5. Reusability: Reusability is nothing but re- usage of structure without changing the
existing one but adding new features or characteristics to it. It is very much
needed for any programmers in different situations. Reusability gives the
following advantages to users. It helps in reducing the code size since classes can
be just derived from existing one and one need to add only the new features and it
helps users to save their time.

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 2

 b. What is a reference variable? Write a C++ program to find the sum of two
numbers using reference variables.

Ans. C++ references allow you to create a second name for a variable that you can use to
read or modify the original data stored in that variable.

Declaring a variable as a reference rather than a normal variable simply entails appending
an ampersand to the type name, such as this "reference to an int"

 int a =5;
 int & b =a;

 #include<iostream.h>
 void main()
 {
 int a, b;
 int sum;
 int &c =a;
 int &d = b;
 cout << “Enter data for a and b \n”;
 cin >> a >> b;
 sum = c + d;
 cout << “ The sum of two number “<< sum;
 }

 c. Describe the new and delete operators with examples.

Ans. C++ supports dynamic allocation and deallocation of objects using the new and
delete operators. These operators allocate memory for objects from a pool called the free
store. The new operator calls the special function operator new, and the delete operator
calls the special function operator delete.

 pointer = new type
 pointer = new type [number_of_elements]

 int * bobby;
 bobby = new int [5];

 delete pointer;
 delete [] pointer;

 #include <iostream>
 #include <new>
 using namespace std;

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 3

 int main ()
 {
 int i,n;
 int * p;
 cout << "How many numbers would you like to type? ";
 cin >> i;
 p= new (nothrow) int[i];
 if (p == 0)
 cout << "Error: memory could not be allocated";
 else
 {
 for (n=0; n<i; n++)
 {
 cout << "Enter number: ";
 cin >> p[n];
 }
 cout << "You have entered: ";
 for (n=0; n<i; n++)
 cout << p[n] << ", ";
 delete[] p;
 }
 return 0;
 }

Q3.a. What is an inline function? List its merits and demerits. Write a program to find

the smaller of two numbers using inline function and the ternary operator.

Ans. Inline functions are functions where the call is made to inline functions. The

actual code then gets placed in the calling program.
Normally, a function call transfers the control from the calling program to the
function and after the execution of the program returns the control back to the
calling program after the function call. These concepts of function save program
space and memory space and are used because the function is stored only in one
place and is only executed when it is called. This execution may be time
consuming since the registers and other processes must be saved before the
function gets called.

The extra time needed and the process of saving is valid for larger functions. If
the function is short, the programmer may wish to place the code of the function
in the calling program in order for it to be executed. This type of function is best
handled by the inline function. In this situation, the programmer may be
wondering "why not write the short code repeatedly inside the program wherever
needed instead of going for inline function?". Although this could accomplish the
task, the problem lies in the loss of clarity of the program. If the programmer
repeats the same code many times, there will be a loss of clarity in the program.

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 4

The alternative approach is to allow inline functions to achieve the same purpose,
with the concept of functions.

 inline int min(int a, int b) { return (a < b) ? a: b; }

 b. What is function overloading? Explain 3 steps of overload resolution with an
example.

Ans. C++ permits the use of two functions with the same name. However such

functions essentially have different argument list. The difference can be in terms
of number or type of arguments or both.

This process of using two or more functions with the same name but differing in
the signature is called function overloading.

But overloading of functions with different return types are not allowed.
In overloaded functions, the function call determines which function definition
will be executed.

The biggest advantage of overloading is that it helps us to perform same
operations on different data types without having the need to use separate names
for each version.

 Example
 int absInt(int);
 long absInt(long);
 float absInt(float);

c. Explain the use of scope resolution operator with an example.

Ans. The scope resolution operator helps to identify and specify the context to which
 an identifier refers.

The scope resolution operator (::) in C++ is used to define the already declared
member functions (in the header file with the .hpp or the .h extension) of a
particular class. In the .cpp file one can define the usual global functions or the
member functions of the class. To differentiate between the normal functions and
the member functions of the class, one needs to use the scope resolution operator
(::) in between the class name and the member function name i.e. ship::foo()
where ship is a class and foo() is a member function of the class ship. The other
uses of the resolution operator is to resolve the scope of a variable when the
same identifier is used to represent a global variable, a local variable, and
members of one or more class (es). If the resolution operator is placed between
the class name and the data member belonging to the class then the data name
belonging to the particular class is referenced. If the resolution operator is placed
in front of the variable name then the global variable is referenced. When no
resolution operator is placed then the local variable is referenced.

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 5

 int n = 12; // A global variable

 int main()
 {
 int n = 13; // A local variable
 cout << ::n << endl; // Print the global variable: 12
 cout << n << endl; // Print the local variable: 13
 }

Q.4.a. Define “class” and “object”. With an example, explain the concept of data
encapsulation and accessing of member elements.

Ans. A class is an expanded concept of a data structure: instead of holding only data, it
can hold both data and functions.

 An object is an instantiation of a class. In terms of variables, a class would be the
type, and an object would be the variable.

 Classes are generally declared using the keyword class, with the following format:
 class class_name {
 access_specifier_1:
 member1;
 access_specifier_2:
 member2;
 ...
 } object_names;

Example:
 #include <iostream>

 class CRectangle
 {
 int x, y;
 public:
 void set_values (int,int);
 int area () {return (x*y);}
 };

 void CRectangle::set_values (int a, int b)
 {
 x = a;
 y = b;
 }

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 6

 int main ()
 {
 CRectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
 return 0;
 }

 b. Write a note on parameterized constructor and destructor with default arguments.

Ans. The main use of constructors is to initialize objects. The function of initialization
is automatically carried out by the use of a special member function called a constructor.

 A constructor is a special member function that takes the same name as the class
name. The syntax generally is as given below:

 { arguments};

 Some important points about constructors:

• A constructor takes the same name as the class name.

• The programmer cannot declare a constructor as virtual or static, nor can the

programmer declare a constructor as const, volatile, or const volatile.

• No return type is specified for a constructor.

• The constructor must be defined in the public. The constructor must be a public

member.

• Overloading of constructors is possible.

Destructors are also special member functions used in C++ programming
language. Destructors have the opposite function of a constructor. The main use
of destructors is to release dynamic allocated memory. Destructors are used to
free memory, release resources and to perform other clean up. Destructors are
automatically named when an object is destroyed. Like constructors, destructors
also take the same name as that of the class name.

 ~ classname();

 Some important points about destructors:

• Destructors take the same name as the class name.

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 7

• Like the constructor, the destructor must also be defined in the public. The

destructor must be a public member.

• The Destructor does not take any argument, which means that destructors cannot

be overloaded.

• No return type is specified for destructors.

c. Create a class Date which has dd, mm and yy as its member variables. A
constructor with 3 arguments to initialize data members and member functions
to:,

 i) Display date in dd:mm:yy format
 ii) Find the difference between two dates and display the total number of days.
 Also provide the main function to initialize 2 different date objects and display
the number of days between them.

#include<iostream>
#include<iomanip>
#include<math.h>
using namespace std;

int days[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
int leap_days[13]={0,31,29,31,30,31,30,31,31,30,31,30,31};

int is_leap(int yy)
{
 if(yy%400==0 || (yy%4==0 && yy%100!=0))
 return 1;
 else
 return 0;
}

class date
{
 private:int dd, mm, yy;

 public: date()
 {
 dd=1, mm=1, yy=2001;
 }
 date(int a, int b, int c)
 {
 dd=a, mm=b, yy=c;
 }

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 8

 void read(); //checks valid date or not
 long julian(); //calc no of days from 1-yy 1-mm 1-dd
 friend ostream& operator <<(ostream& os, date& d);
 int operator -(date a); //calls julian-a.julian
 date operator +(int nd);
};

long date :: julian()
{
 long i, t=0;
 for(i=1;i<yy;i++)
 {
 if(is_leap(i))
 t+=366;
 else
 t+=365;
 }
 for(i=1;i<mm;i++)
 {
 if(is_leap(yy))
 t+=leap_days[i];
 else
 t+=days[i];
 }
 t+=dd;
 return t;
}

void date :: read()
{
 char ch;
 cout<<endl<<"Enter date in (dd/mm/yy) format:";
 cin>>dd>>ch>>mm>>ch>>yy;

 if(is_leap(yy))
 {
 if(mm>12 || dd>leap_days[mm])
 {
 cout<<endl<<"Wrong date";
 read();
 }
 }
 else
 {
 if(mm>12 || dd>days[mm])
 {

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 9

 cout<<endl<<"Wrong date";
 read();
 }
 }
}

ostream& operator <<(ostream& os, date& d)
{
 os<<d.dd<<"/"<<d.mm<<"/"<<d.yy;
}

int date :: operator -(date a)
{
 int diff;
 diff=julian()-a.julian();
 return abs(diff);
}

date date :: operator +(int nd)
{
 date next=*this;

 while(nd)
 {
 next.dd++;
 nd--;
 if(is_leap(next.yy)) //checks whether leap year or not
 {
 if(next.dd>leap_days[next.mm]) //if leap year compares with leap_days
array

 {
 next.dd=1;
 next.mm++;
 }
 }
 else
 {
 if(next.dd>days[next.mm])
 {
 next.dd=1;
 next.mm++;
 }
 }
 if(next.mm>12)
 {

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 10

 next.mm=1;
 next.yy++;
 }
 }
 return next;
}

int main()
{
 date d1, d2;
 int nd, choice, done=0;

 while(!done)
 {
 cout<<endl<<"1.Difference in dates"
 <<endl<<"2.Future date"
 <<endl<<"0.Exit"
 <<endl<<"Enter your choice:";
 cin>>choice;

 switch(choice)
 {
 case 1: d1.read();
 d2.read();
 nd=d1-d2;
 cout<<endl<<"Difference="<<nd<<" days";
 break;
 case 2: d1.read();
 cout<<endl<<"Enter number of days to add:";
 cin>>nd;
 d2=d1+nd;
 cout<<endl<<"Future date="<<d2;
 break;
 case 0:
 default:done=1;
 exit(0);
 }
 }
 return 0;
}

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 11

Q.5.a. Write a C++ program to create a class called MATRIX using 2-dimensional array
of integers. Implement the following by overloading the operator == which checks the
compatibility of two matrices to be added and subtracted. Perform the following by
overloading + (plus) and – (Minus) operators. Display the result by overloading the
operator <<.
 if (m1== m2) {
 m3=m1+m2;
 m4=m1-m2;
 }
 else
 Display error.
 Where m1, m2, m3 and m4 are MATRIX class objects.

Ans.
 #include<iostream.h>
 #include<conio.h>

 class Matrix
 {
 int a[10][10];
 int row,col;

 public:

 void getmatrix()
 {
 cin>>row>>col;
 }

 void read();

 friend ostream & operator << (ostream & x,Matrix & m);

 Matrix operator + (Matrix);
 Matrix operator - (Matrix);

 int operator == (Matrix m2)
 {
 if(row==m2.row && col==m2.col)
 return(1);
 else
 return(0);
 }
 };
 void Matrix :: read()
 {

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 12

 int i,j;

 for(i=0; i<row; i++)
 for(j=0; j<col; j++)
 cin>>a[i][j];
 }

ostream & operator << (ostream & x,Matrix & m)
{

 int i,j;

 for(i=0; i<m.row; i++)
 {
 for(j=0; j<m.col; j++)
 cout<<m.a[i][j]<<" "
 cout<<"\n";
 }
 return(x);
}

Matrix Matrix :: operator + (Matrix m2)
{
 Matrix res;
 res.row=row;
 res.col=col;

 int i,j;

 for(i=0; i<row; i++)
 for(j=0; j<col; j++)
 res.a[i][j]=a[i][j]+m2.a[i][j];

 return(res);
}

Matrix Matrix :: operator - (Matrix m2)
{
 Matrix res;
 res.row=row;
 res.col=col;

 int i,j;

 for(i=0; i<row; i++)
 for(j=0; j<col; j++)

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 13

 res.a[i][j]=a[i][j]-m2.a[i][j];

 return(res);
}

int main()
{
 clrscr();
 Matrix m1,m2,m3,m4;

 cout<<"\nEnter the order of 1st matrix : ";
 m1.getmatrix();

 cout<<"\nEnter the order of 2nd matrix : ";
 m2.getmatrix();

 if(m1==m2)
 {
 cout<<"\nEnter the elements of 1st matrix\n";
 m1.read();

 cout<<"\nEnter the elements of 2nd matrix\n";
 m2.read();

 m3=m1+m2;
 m4=m1-m2;

 cout<<"\nm1 is..\n";
 cout<<m1;

 cout<<"\nm2 is..\n";
 cout<<m2;

 cout<<"\nm3 is..\n";
 cout<<m3;

 cout<<"\nm4 is..\n";
 cout<<m4;
 }
 else
 cout<<"\nOperation is not possible !";

getch();
return 0;
}

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 14

b. Write a program to overload new and delete operators.

Ans. Pg. No. 253-256 of Text Book 1- C++ & OOPs Paradigm, Debasish Jana,
Second Edition, PHI 2005

Q.6.a. What is a derived class? Explain with examples the three ways in which a class
can be inherited.

Ans. Creating or deriving a new class using another class as a base is called inheritance
in C++. The new class created is called a Derived class and the old class used as a base is
called a Base class in C++ inheritance terminology.

The derived class will inherit all the features of the base class in C++ inheritance. The
derived class can also add its own features, data etc.; it can also override some of the
features (functions) of the base class, if the function is declared as virtual in base class.

Public inheritance

Public inheritance is by far the most commonly used type of inheritance. In fact, very
rarely will you use the other types of inheritance, so your primary focus should be on
understanding this section. Fortunately, public inheritance is also the easiest to
understand. When you inherit a base class publicly, all members keep their original
access specifications. Private members stay private, protected members stay protected,
and public members stay public.

 class Base
 {
 public:
 int m_nPublic;
 private:
 int m_nPrivate;
 protected:
 int m_nProtected;
 };

 class Pub: public Base
 { };

Private inheritance

With private inheritance, all members from the base class are inherited as private. This
means private members stay private, and protected and public members become private.

Note that this does not affect that way that the derived class accesses members inherited
from its parent! It only affects the code trying to access those members through the
derived class.

class Base

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 15

 {
 public:
 int m_nPublic;
 private:
 int m_nPrivate;
 protected:
 int m_nProtected;
 };

 class Pri: private Base
 { };

Protected inheritance

Protected inheritance is the last method of inheritance. It is almost never used, except in
very particular cases. With protected inheritance, the public and protected members
become protected, and private members stay private.

b. Explain how pointers are used in base and derived classes with an example.

Ans. Pointers to base class

 One of the key features of derived classes is that a pointer to a derived class is
type-compatible with a pointer to its base class. Polymorphism is the art of taking
advantage of this simple but powerful and versatile feature, that brings Object Oriented
Methodologies to its full potential.

// pointers to base class
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 };

class CRectangle: public CPolygon {
 public:
 int area ()
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 16

 int area ()
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 cout << rect.area() << endl;
 cout << trgl.area() << endl;
 return 0;
}

In function main, we create two pointers that point to objects of class CPolygon (ppoly1
and ppoly2). Then we assign references to rect and trgl to these pointers, and because
both are objects of classes derived from CPolygon, both are valid assignment operations.

The only limitation in using *ppoly1 and *ppoly2 instead of rect and trgl is that both
*ppoly1 and *ppoly2 are of type CPolygon* and therefore we can only use these pointers
to refer to the members that CRectangle and CTriangle inherit from CPolygon. For that
reason when we call the area() members at the end of the program we have had to use
directly the objects rect and trgl instead of the pointers *ppoly1 and *ppoly2.

In order to use area() with the pointers to class CPolygon, this member should also have
been declared in the class CPolygon, and not only in its derived classes, but the problem
is that CRectangle and CTriangle implement different versions of area, therefore we
cannot implement it in the base class. This is when virtual members become handy:

// virtual members
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area ()
 { return (0); }
 };

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 17

class CRectangle: public CPolygon {
 public:
 int area ()
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area ()
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon poly;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 CPolygon * ppoly3 = &poly;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly3->set_values (4,5);
 cout << ppoly1->area() << endl;
 cout << ppoly2->area() << endl;
 cout << ppoly3->area() << endl;
 return 0;
}

Now the three classes (CPolygon, CRectangle and CTriangle) have all the same
members: width, height, set_values() and area().

The member function area() has been declared as virtual in the base class because it is
later redefined in each derived class. You can verify if you want that if you remove this
virtual keyword from the declaration of area() within CPolygon, and then you run the
program the result will be 0 for the three polygons instead of 20, 10 and 0. That is
because instead of calling the corresponding area() function for each object
(CRectangle::area(), CTriangle::area() and CPolygon::area(), respectively),
CPolygon::area() will be called in all cases since the calls are via a pointer whose type is
CPolygon*.

Therefore, what the virtual keyword does is to allow a member of a derived class with the
same name as one in the base class to be appropriately called from a pointer, and more
precisely when the type of the pointer is a pointer to the base class but is pointing to an
object of the derived class, as in the above example.

A class that declares or inherits a virtual function is called a polymorphic class.

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 18

Note that despite of its virtuality, we have also been able to declare an object of type
CPolygon and to call its own area() function, which always returns 0.

 c. What are virtual functions? Explain the usage of virtual functions with examples.

Ans. In object-oriented programming, a virtual function or virtual method is a function or
method whose behavior can be overridden within an inheriting class by a function with
the same signature. This concept is a very important part of the polymorphism portion of
object-oriented programming (OOP).

 C++ virtual function is,

 A member function of a class
 Declared with virtual keyword
 Usually has a different functionality in the derived class
 A function call is resolved at run-time

 class Window // Base class for C++ virtual function example
 {
 public:
 virtual void Create() // virtual function for C++ virtual function example
 {
 cout <<"Base class Window"<<ENDL;
 }
 };

 class CommandButton : public Window
 {
 public:
 void Create()
 {
 cout<<"Derived class Command Button - Overridden C++ virtual
function"<<ENDL;
 }
 };

 void main()
 {
 Window *x, *y;

 x = new Window();
 x->Create();

 y = new CommandButton();

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 19

 y->Create();
 }

Q7 a. Mention any two functions for each of the following:-

i. I/P Stream
ii. O/P Stream

Ans. Pg. No. 354, 362, 363, 364-365 of Text Book 1- C++ & OOPs Paradigm,
Debasish Jana, Second Edition, PHI 2005

b. Give the structure of Stream class hierarchy.

Ans.

Abstractly, a stream can be thought of as a sequence of bytes of infinite length that is
used as a buffer to hold data that is waiting to be processed.

Typically we deal with two different types of streams. Input streams are used to hold
input from a data producer, such as a keyboard, a file, or a network. For example, the user
may press a key on the keyboard while the program is currently not expecting any input.
Rather than ignore the users key press, the data is put into an input stream, where it will
wait until the program is ready for it.

Conversely, output streams are used to hold output for a particular data consumer, such as
a monitor, a file, or a printer. When writing data to an output device, the device may not
be ready to accept that data yet — for example, the printer may still be warming up when
the program writes data to its output stream. The data will sit in the output stream until
the printer begins consuming it.

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 20

The istream class is the primary class used when dealing with input streams. With input
streams, the extraction operator (>>) is used to remove values from the stream. This
makes sense: when the user presses a key on the keyboard, the key code is placed in an
input stream. Your program then extracts the value from the stream so it can be used.

The ostream class is the primary class used when dealing with output streams. With
output streams, the insertion operator (<<) is used to put values in the stream. This also
makes sense: you insert your values into the stream, and the data consumer (eg. monitor)
uses them.

The iostream class can handle both input and output, allowing bidirectional I/O.

c. Write a C++ program demonstrate reading from and writing to a text file.

Ans: #include <iostream>

#include <fstream>
#include <conio.h>

using namespace std;

class File
{

 ifstream f1;
 ofstream f2;
 char s[200];

 public:
 void ShowFile(char *nume);
 void ReadInFile(char *nume);

};

void File::ReadInFile(char *nume)
{

 f2.open(nume);
 for(int i=0; i<strlen(s); i++)
 {
 f2<<s[i];
 }

 f2.close();

}

void File::ShowFile(char *nume)
{

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 21

 f1.open(nume);
 if(f1.fail())
 {
 cout<<"Error opening file!";
 getch();
 exit(1);
 }
 while(!f1.eof())
 {
 for(int i=0; i<strlen(s); i++)
 {
 f1>>s[i];
 cout<<s[i];
 }
 }
 f1.close();
}

int main()
{
 File F;
 F.ShowFile("slav.txt");
 F.ReadInFile("slav2.txt");

 getch();
 return 0;
}

Q.8.a. What is a class template? With syntax, explain the purpose of the class template
with multiple parameters.

Ans. Templates are a feature of the C++ programming language that allow functions and
classes to operate with generic types. This allows a function or class to work on many
different data types without being rewritten for each one.

Class templates

 A class template provides a specification for generating classes based on
parameters. Class templates are commonly used to implement containers. A class
template is instantiated by passing a given set of types to it as template arguments.[1] The
C++ Standard Library contains many class templates, in particular the containers adapted
from the Standard Template Library, such as vector.

 template <class T>
 class mypair
 {

http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Generic_programming
http://en.wikipedia.org/wiki/Datatype
http://en.wikipedia.org/wiki/Container_(data_structure)
http://en.wikipedia.org/wiki/Template_(programming)#cite_note-cpptemplates-0
http://en.wikipedia.org/wiki/Standard_Template_Library
http://en.wikipedia.org/wiki/Vector_(C%2B%2B)

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 22

 T values [2];
 public:
 mypair (T first, T second)
 {
 values[0]=first; values[1]=second;
 }
 };

The class that we have just defined serves to store two elements of any valid type. For
example, if we wanted to declare an object of this class to store two integer values of type
int with the values 115 and 36 we would write:

mypair<int> myobject (115, 36);

this same class would also be used to create an object to store any other type:

mypair<double> myfloats (3.0, 2.18);
// class templates
#include <iostream>
using namespace std;

template <class T>
class mypair
{
 T a, b;
 public:
 mypair (T first, T second)
 {a=first; b=second;}
 T getmax ();
};

template <class T>
T mypair<T>::getmax ()
{
 T retval;
 retval = a>b? a : b;
 return retval;
}

int main () {
 mypair <int> myobject (100, 75);
 cout << myobject.getmax();
 return 0;
}

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 23

b. Write a C++ program to overload a template function called swap().

Ans.

 template<class T>
 void swap(T& a, T& b)
 {
 T tmp = a;
 a = b;
 b = tmp;
 }

 void swap(int& a, int& b)
 {
 int tmp = a;
 a = b;
 b = tmp;
 }

c. Explain the exception handling mechanism with an example.

 Ans. Exception handling is a mechanism that separates code that detects and handles
 exceptional circumstances from the rest of your program. Note that an exceptional
 circumstance is not necessarily an error.

 When a function detects an exceptional situation, you represent this with an
object. This object is called an exception object. In order to deal with the exceptional
situation you throw the exception. This passes control, as well as the exception, to a
designated block of code in a direct or indirect caller of the function that threw the
exception. This block of code is called a handler. In a handler, you specify the types of
exceptions that it may process. The C++ run time, together with the generated code, will
pass control to the first appropriate handler that is able to process the exception thrown.
When this happens, an exception is caught. A handler may rethrow an exception so it can
be caught by another handler.

The exception handling mechanism is made up of the following elements:

• try blocks
• catch blocks
• throw expressions
• Exception specifications

One benefit of C++ over C is its exception handling system. An exception is a situation in
which a program has an unexpected circumstance that the section of code containing the
problem is not explicitly designed to handle. In C++, exception handling is useful

http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/topic/com.ibm.xlcpp8a.doc/language/ref/the_try_keyword.htm#the_try_keyword
http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/topic/com.ibm.xlcpp8a.doc/language/ref/the_catch_keyword.htm#the_catch_keyword
http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/topic/com.ibm.xlcpp8a.doc/language/ref/the_throw_keyword.htm#the_throw_keyword
http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/topic/com.ibm.xlcpp8a.doc/language/ref/cplr156.htm#cplr156

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 24

because it makes it easy to separate the error handling code from the code written to
handle the chores of the program. Doing so makes reading and writing the code easier.

Furthermore, exception handling in C++ propagates the exceptions up the stack;
therefore, if there are several functions called, but only one function that needs to reliably
deal with errors, the method C++ uses to handle exceptions means that it can easily
handle those exceptions without any code in the intermediate functions. One consequence
is that functions don't need to return error codes, freeing their return values for program
logic.

When errors occur, the function generating the error can 'throw' an exception. For
example, take a sample function that does division:

const int DivideByZero = 10;
//....
double divide(double x, double y)
{
 if(y==0)
 {
 throw DivideByZero;
 }
 return x/y;
}

The function will throw DivideByZero as an exception that can then be caught by an
exception-handling catch statement that catches exceptions of type int. The necessary
construction for catching exceptions is a try catch system. If you wish to have your
program check for exceptions, you must enclose the code that may have exceptions
thrown in a try block. For example:
try
{
 divide(10, 0);
}
catch(int i)
{
 if(i==DivideByZero)
 {
 cerr<<"Divide by zero error";
 }
}

The catch statement catches exceptions that are of the proper type. You can, for example,
throw objects of a class to differentiate between several different exceptions. As well,

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DECEMBER
2012

© IETE 25

once a catch statement is executed, the program continues to run from the end of the
catch.

Q9 a. Explain various control statements used in C++.

Ans. Pg. No.-60-62 of Text Book 1- C++ & OOPs Paradigm, Debasish Jana, Second
Edition, PHI 2005

b. Write a program to illustrate pointers to pointers.

Ans. Pg. No.-111 of Text Book 1- C++ & OOPs Paradigm, Debasish Jana, Second
Edition, PHI 2005

c. Explain the role of pointer constants and pointer arithmetic. Give an example.

Ans. Pg. No.-114 of Text Book 1- C++ & OOPs Paradigm, Debasish Jana, Second
Edition, PHI 2005

